Cambridge IGCSE ${ }^{\circledR}$

CHEMISTRY

0620/03
Paper 3 Theory (Core)
MARK SCHEME
Maximum Mark: 80
mark scheme abbreviations

;	separates marking points
not	alternative responses for the same marking point
allow	do not allow
ecf	accept the response
avp	error carried forward
ora	any valid point
owtte	or words to that effect
underline	actual word given must be used by candidate (grammatical variants excepted)
()	indicates word / phrase in brackets is not required but sets the context
max	additional marking guidance
Any [number] from: accept the [number] of valid responses	
note:	

1 (a) diamond:
covalent;
giant structure / macromolecule;
chlorine: any two of:
molecule;
covalent;
diatomic;
(b) $\mathrm{C}_{6} \mathrm{Cl}_{12}$
(c) (i) green / yellow-green / light green
(ii) value between $2.5-4(.0)\left(\mathrm{g}\right.$ per $\left.\mathrm{dm}^{3}\right)($ actual $=3.12)$
(iii) increases
(d) (i) potassium bromide
not: potassium bromine
iodine
not: iodide
(ii) chlorine is more reactive than bromine / ora not: chloride is more reactive than bromide
(e) solubility in water:
ionic compounds are soluble and molecular compounds are not soluble note: both needed for mark
electrical conductivity:
ionic compounds conduct electricity when molten / in (aqueous) solution
and molecular compounds do not
note: both needed for mark

2 (a) Br_{2}
(b) Any three of:
bromine evaporates / liquid evaporates;
more energetic particles change from liquid to vapour or gas;
diffusion;
random movement of particles / particles move everywhere / air and bromine particles are moving;
(bromine and air) particles get mixed up / collision of bromine and air particles; allow: molecules in place of particles

3 (a) $\mathrm{E} /$ nitrogen (di)oxide $/ \mathrm{NO}_{2}$
(b) $\mathrm{B} /$ potassium nitrate $/ \mathrm{KNO}_{3}$
(c) $\mathrm{A} /$ ammonia $/ \mathrm{NH}_{3}$
(d) $\mathrm{E} /$ nitrogen (di)oxide $/ \mathrm{NO}_{2}$
(e) $\mathrm{C} / \mathrm{NI}_{3} /$ nitrogen (tri)iodide
(f) $\mathrm{B} /$ potassium nitrate $/ \mathrm{KNO}_{3}$

4 (a) calcium oxide allow: CaO
(b) thermal decomposition
(c) carbon dioxide has been removed from the limestone / it comes from the limestone / carbon dioxide is a product
(d) neutralising acidic soils / treating acidic lakes / flue gas desulfurisation allow: any suitable use
(e) temperature of Bunsen / distance of Bunsen from the tube / mass of carbonate used / owtte
(f) (i) calcium carbonate
(ii) $27\left(\mathrm{~cm}^{3}\right)$
(iii) calcium faster than strontium which is faster than barium / idea of trend down the group;
correct trend, i.e. less rapid reaction the further down the group / ora;
(g) add acid to carbonate;
bubble gas or carbon dioxide (evolved) through limewater / test gas or carbon dioxide with limewater; limewater goes milky or cloudy;

5 (a) Any three of: high melting / boiling point;
high density;
form coloured compounds or have coloured ions;
form ions of more than one charge / variable valency / variable oxidation state; allow: form complex ions; hard / hardness; catalysts;
(b) (i) different number of neutrons / different nucleon number
(ii) 31
(iii) 23
(c) suitable method, e.g. coating with paint / zinc / unreactive metal / plastic / oil / grease / galvanising / sacrificial protection;
suitable reason, e.g. stops air / water reaching surface;
note: reason must be consequential to the method chosen
(d) Any two of:
recycling promotes sustainable development / owtte;
uses less energy than extraction;
preserves limited natural resources;
correct reference to cost;
reference to landfill;
(e) $\mathrm{Fe}_{2} \mathrm{O}_{3} /$ iron oxide;
it loses oxygen / gains electrons / iron decreases oxidation number;
(f) (i) incomplete combustion / insufficient or limited or not enough oxygen
(ii) toxic / suffocates you / stops red blood cells carrying oxygen / binds with hemoglobin in place of oxygen

6 (a) break down (of substance / electrolyte) by electricity / splitting up of substance by electricity / decomposition by electricity
allow: current / voltage for electricity
(b) anode
(c) hydrogen
allow: H_{2}
(d) platinum;
inert;
(e) (i) 2,8,7 as shown in an electron shell diagram
(ii) pair of electrons between two chlorine atoms;
rest of electrons correct;
(iii) (damp) litmus (paper) / Universal indicator (paper);
allow: indicator paper / pH paper
bleaches / goes white / goes red then bleaches;
(f) (i) calcium chloride + water (1 mark each)
[2]
not: calcium chlorine
(ii) 2 on left;
H_{2} on right; not: 2 H

7
(a) (i) 78 (\%)
allow: 78-80
(ii) Any two of:
carbon dioxide; argon; neon; xenon; helium; radon; water; not: hydrogen
(b) (i) decreases / gets less / gets lower / gets used up
(ii) increases / gets more / greater
(c) any suitable use e.g. electrical conductor / electrical wiring / saucepans

8 (a) (i) (group of) molecules with similar boiling points / (group of) molecules with similar relative molecular masses / molecules with limited range of boiling points / molecules with limited range of molecular masses / molecules coming off at the same place in the fractionation column / owtte
(ii) $\mathrm{C}_{10} \mathrm{H}_{22}$
allow: reasonable mixtures, e.g. $\mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{3} \mathrm{H}_{6}$
(b) refinery gas: (fuel) for heating / (fuel) for cars / (fuel) for cooking;
gasoline: (fuel) for cars / mowers etc.;
(c) unsaturated: contains double bonds / contains $\mathrm{C}=\mathrm{C}$ bonds;
hydrocarbon: containing carbon and hydrogen only;
(d) (i) 1st box down ticked (catalytic addition of steam)
(ii) correct structure of ethanol;
bond between $\mathrm{O}-\mathrm{H}$;
(e) monomers;
polymers;

